FACT SHEET APPENDIX

YUNNAN PROVINCE

1. Fact Sheet Template and Guidelines
2. Land Degradation Fact Sheets
3. Threats to Biodiversity Fact Sheets
4. Inland Water Pollution Fact Sheets
5. Inadequate Waste Management Fact Sheets
6. Forest Resources Fact Sheets
7. Natural Disasters Fact Sheets
8. Climate Change Fact Sheets
| **Greater Mekong Subregion**
| **Indicator Fact Sheet Template** |
| **DATABASE INFORMATION** |
| **Indicator ID** | Use as appropriate or leave blank |
| **Indicator Name** | The name, or title, assigned to the indicator, e.g. “Population density in the Uplands”, followed by the time range of the indicator data, e.g. “1914 to 2003” or “1990 and 2000” |
| **Year of Assessment** | The year in which the fact sheet was developed, e.g. 2004 |
| **Type of Indicator** | Pressure, State or Response |
| **Frequently Asked Question (FAQ)** | The non-scientific FAQ that the indicator attempts to answer, e.g. “Is the water safe to drink?” for an indicator that reports on BOD levels in water “.” |
| **Priority Concern** | The name of the priority concern that this indicator relates to. Normally it should relate to only one concern. |
| **Geographic Area** | The name of the country or province in the GMS |
| **Magnitude & Trend (for pressure indicator) or State & Trend (for state indicator) or Impact & Trend (for response indicator)** | See Fact sheet and EPA Evaluation Criteria for vocabulary to be placed here for the final rating. |
| **Key Message** | In answer to the FAQ above, the “super-executive summary” of the fact sheet analysis results, including, if appropriate a statement of observed trend and a statement of the current situation in terms of targets. |
A. Definition
This section should define very precisely what “the indicator” is and in what units the indicator is expressed. It should also include a precise definition of the terms that make up the indicator.

The section should start out with a generic statement such as “This indicator attempts to track the amount of ... (give precise definition of what you are tracking) over ... (usually time); it is expressed as (give the precise units of the indicator, both numerator and denominator).

Follow this definition with the definition of other terms you have utilized for the definition of the indicator (e.g. define more precisely what “forest cover” means, what “expenditure” means, what “threatened species” means, etc.

B. Data Source
If the data originates from a known information system, give the name of such information (e.g. FAOSTAT) along with the name of the organization which maintains such information system (e.g. FAO). If the data was taken from a publication, give the full reference of that publication. If the data was extracted from the Internet, give the generic name of the website homepage but do not include the URL. Otherwise specify where or from whom you obtained the data.

C. Geographic Area / Population Coverage
If the data covers the entire country or province, or if the data represents 100% of the population you are describing, then simply state so (e.g. “the data and the indicator is representative of ... for the country as a whole”). Otherwise describe any gaps or restrictions on the geography (e.g. “excluding province X” or “only on agricultural soils”) or on the population (e.g. “only commercial fisheries” or “only reported cases”). If the data is only for a representative sample of the population (e.g. “only major rivers” or “only X cities”), then provide more details on the sub-sample (e.g. “Cities X and Y” or “X rivers with discharge greater than Y cms”.

D. Temporal Coverage
If the data represents a one-time measurement (e.g. land cover), state as precisely as you can the place in time when this measurement was taken (e.g. “represents ground condition in 1999”). If the data is expressed as a time series, given the start and end times along with an explanation of any gaps which may occur in the time series and/or how those gaps may have been filled in.

E. Methodology and Frequency of Coverage
Whenever possible, describe the methodologies that the originator utilized to compile the datasets that you are utilizing (e.g. “using un-supervised remote sensing classification on a Landsat-7 satellite image” or “using a 1km by 1km random stratified grid”). Comment on the frequency of measurement and/or update (e.g. “a one-time measurement from a project” or “based on year 2000 data which will be updated shortly”) and on the likelihood that the measurement will be repeated (e.g. “maintained by a UN organization for the past four decades”)

F. Methodology of Data Manipulation
The focus here is on the manipulation that you may have made to the original data to get it into a form where it has become useful to you as an indicator; the focus is not on the methods that the originator utilized to obtain the data in the first place. Describe all the manipulations you have done on the original data, ensuring that enough detail is given so that others can repeat the methodology at a late data in time.
QUALITATIVE INFORMATION

A. **Strength and Weakness (data level)**
Comment on the strengths and weaknesses of the data you have utilized, in relation to the phenomenon you were trying to measure. If the indicator is to show a trend over time, comment on the strengths (or weaknesses) of the data to show variance over time (present and future). Comment on any bias that is inherent with the data in respect of the phenomenon you are trying to measure.

B. **Reliability, Accuracy, Robustness, Uncertainty (data level)**
Comment on the reliability of the data, especially in relation to whom or where you got it from; quote all endorsements that were made on the data during the review process. Quote any accuracy measures that were given or published with the original data (e.g. “according to IHO standards” or “according to national mapping standards”). Comment on the robustness of the data in terms of how it may have been used elsewhere and how it can still be applicable to the GMS. State any assumptions you have made with the data and any relevant uncertainties.

C. **Future Work Required (for data level and indicator level)**
If applicable, comment of how the data could be improved to better serve the purposes of the indicator, or how the indicator could be improved with additional or alternative sources of data.

SUPPORTING DATA TABLES, GRAPHS AND MAPS

The section should start with a graph (Figure 1) and a table (Table 1) which summarizes the value of the indicator over time. The graph will normally be re-produced in the EPA report, without the table. The table therefore should contain all the necessary data to re-produce the graph and, as much as possible, not too much else.

The title of the graph and table should correspond to the name of the indicator. If the indicator is expressed as a time series, the x-axis of the graph should also be expressed as a time series. Add as many supplemental graphs and tables, or maps, as required to further expand on the indicator or to include non-indicator specific information that might supplement the fact sheet but make sure supplemental information is used and referenced in the final Analysis Section of the fact sheet.

All graphs should be followed by the table with the data that was utilized to generate them. Graph titles and table titles should be placed outside the graph and table, as a bolded title on top of the figure or table. All tables should identify the source of the data in the last row of the table.

Try and keep the graphs and maps to the minimum size, but with sufficient resolution and detail so as to portray the trend or spatial distributions that are being evaluated. Number each table and each graph (or map) so that they can be referenced in the evaluation text. Give the same number to the table and the corresponding graphic; if you generate more than one graphic from the same table, use alphabetical sub-numbering.
A. Policy Reference
This section on policy reference may not apply to some pressure and state indicators and to some very specific response indicators where related policies and regulations cannot be inferred. In these cases, the entire section can be omitted. But for normal response indicators, the lack of policy or regulation should be noted and highlighted as a “gaps”.

1. Purpose:
Comment on the purpose of the indicator and (i) what function it performs in terms of environment performance assessment i.e. what parameter it assesses and what resource it protects, (ii) what objective’s compliance it monitors and (iii) what potential corrective action (s) it requires.

2. Relevance to Environment Planning and Management:
Comment on the broad/general importance of this indicator for assessing other related environmental issues e.g. socio-economic relevance, link with any public health, quality of life related issues etc.

3. Linkage to Other Indicators:
Give a list of other indicators this indicator is linked to i.e. what other indicator values this indicator directly or indirectly affects.

4. Targets:
Give details on what targets have been set by the national environment agency or ministry for this indicator to comply with i.e. what are the quantifiable environmental standard this indicator has to comply with.

5. International Environment Treaties:
If applicable, give the name, scope, status of implementation of the international environmental treaty(s) your country has signed for this indicator and give an update on the progress of its implementation. Otherwise state “None applicable”.

6. Laws:
If applicable, name national laws that have some implication to the indicator. Otherwise leave out this sub-section.

B. Analysis
This section is dedicated to the analysis of the indicator and the final rating of the results. The first paragraphs should be focused on the description of the observed results, as observed in the tables and graphs (e.g. “As can be observed from Table 1 and Figure 1”, describe the observed value and the observed trend of the indicator).

State if the indicator values comply with the stipulated national target or standard and (in relevant cases) international standard. Comment on the size of the discrepancy between the two and its trend (can a reliable trend be established? Does it point to an underlying improvement or deterioration? Can the fluctuating values of the indicator be related to distinct policy interventions such as mitigation measures, changed pattern of economic incentives, or other corrective actions?). Say whether the results might be indicative of inappropriate or moving targets/standards rather than simply reflecting performance. Comment on the role, if any, of factors outside management control (climatic factors, natural disasters, etc.). Identify the factors most relevant to observed outcomes and specify key related indicators.

Keep in mind the ultimate purpose of your effort, i.e. to review performance by environmental concerns and groups of concerns such review normally resting on several indicators rather than a single one. Analysis of a single indicator to be performed below is important but it is in combining it with the analysis of other indicators that policy insights are generated and performance assessment gains depth.

The last paragraph of this analysis section should be focused on the justification of the indicator ranking, based on the vocabulary and guidelines given in “Fact sheet and EPA Evaluation Criteria”. The last sentence should highlight (in bold) the final ranking of the indicator results.
Greater Mekong Subregion Indicator Fact Sheet

DATABASE INFORMATION

Indicator ID

Indicator Name
Total Area Affected by Soil Erosion · 1987 to 2000

Year of Assessment
2004

Type of Indicator
State

Frequently Asked Question (FAQ)
How large is the area affected by soil erosion in Yunnan? Are there important differences in the severity of soil erosion within that total? Has the overall situation improved in the last 20 years?

Priority Concern
Land Degradation

Geographic Area
Yunnan Province

State & Trend
Average and Stabilizing

Key Message
As a result of a number of water-and-soil conservation projects, the total area subject to soil erosion in Yunnan has decreased somewhat during the period 1987 to 2000. The performance was not the same in all erosion classes, and the area of some has actually increased.

TECHNICAL INFORMATION

A. Definition
This indicator attempts to track the amount the total area affected by soil erosion in Yunnan Province over time; it is expressed as the absolute amount in square kilometers (km2).

Six erosion classes are distinguished in PRC namely slight erosion light erosion moderate erosion strong erosion deep-strong erosion severe erosion (see Table 1). The total area vulnerable to soil erosion includes areas affected by any of the six classes of erosion listed below. Most soil erosion in Yunnan is caused by water (rather than wind).

Soil erosion class definitions:

<table>
<thead>
<tr>
<th>Class</th>
<th>Average Erosion [t/(km²·p.a.)]</th>
<th>Average Erosion Depth (mm/a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 slight erosion</td>
<td><200, 500, 1000</td>
<td>0.15, 0.37, 0.74-1.9</td>
</tr>
<tr>
<td>2 light erosion</td>
<td>200, 500, 1000-2500</td>
<td>1.9-3.7</td>
</tr>
<tr>
<td>3 moderate erosion</td>
<td>2,500-5,000</td>
<td>3.7-5.9</td>
</tr>
<tr>
<td>4 strong erosion</td>
<td>5,000-8,000</td>
<td>5.9-11.1</td>
</tr>
<tr>
<td>5 deep strong erosion</td>
<td>8,000-15,000</td>
<td>>11.1</td>
</tr>
<tr>
<td>6 severe erosion</td>
<td>>15,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td><0.15, 0.37, 0.74</td>
<td></td>
</tr>
</tbody>
</table>
B. Data Source
Yunnan Province Soil Erosion Remote Sensing Survey Yunnan Province Water Conservancy and Hydroelectric Power Department.

C. Geographic Area / Population Coverage
The data and the figures are representative of Yunnan Province as a whole.

D. Temporal Coverage
Data are only available for 1987 and 2000.

E. Methodology and Frequency of Coverage
The surveys were conducted using remote sensing techniques with visual interpretation. The Water Conservancy and Hydroelectric Power Department conducts surveys of soil erosion on a regular basis.

F. Methodology of Data Manipulation
Provincial figures are quoted directly from the source without any additional manipulation.

QUALITATIVE INFORMATION

A. Strength and Weakness (data level)
The indicator tracks changes in the total soil erosion area in Yunnan. Since improvement or worsening of the situation is typically a matter of changes across different classes of erosion (rather than changes from erosion to no erosion or vice versa), the indicator may fail to reveal changes for the better or worse unless supplemented by attention to each erosion sub-class.

B. Reliability, Accuracy, Robustness, Uncertainty (data level)
The reliability and accuracy of the surveys is not known, other than to know that the interpretation is based on Landsat TM imagery at a scale of 1:100,000.

T. Future Work Required (for data level and indicator level)
The indicator and the fact sheet should be updated when more recent figures become available from the Water Conservancy and Hydroelectric Power Department.

SUPPORTING DATA TABLES, GRAPHS AND MAPS

Figure 1: Soil Erosion Area – 1987 and 2000
Table 1: Soil Erosion Area > 1987 and 2000

<table>
<thead>
<tr>
<th>Year</th>
<th>Soil Erosion Area (km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1987</td>
<td>146,430.41</td>
</tr>
<tr>
<td>2000</td>
<td>141,333.70</td>
</tr>
</tbody>
</table>

Figure 2: Soil Erosion Area, by Soil Erosion Class > 1987 and 2000

Table 2: Soil Erosion Area, by Soil Erosion Class > 1987 and 2000

<table>
<thead>
<tr>
<th></th>
<th>light erosion area (km²)</th>
<th>moderate erosion area (km²)</th>
<th>strong erosion area (km²)</th>
<th>deep strong erosion area (km²)</th>
<th>severe erosion area (km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1987</td>
<td>86,151.72</td>
<td>51,611.78</td>
<td>7,845.71</td>
<td>552.30</td>
<td>268.72</td>
</tr>
<tr>
<td>2000</td>
<td>79,982.43</td>
<td>52,658.58</td>
<td>8,111.21</td>
<td>407.62</td>
<td>173.68</td>
</tr>
</tbody>
</table>

Source: Yunnan Province Soil Erosion Remote Sensing Survey, Yunnan Province Water Conservancy and Hydroelectric Power Department
A. Policy Reference

1. Purpose:

This indicator is developed to track the state of soil erosion over time. Monitoring of soil erosion is essential because of its direct impact on rural livelihoods and its broader impact on the integrity of landscapes and conservation of environmental services these landscapes provide.

2. Relevance to Environment Planning and Management:

The Government’s policy has a strong bias towards soil conservation as cited below from the Law on Water and Soil Conservation (adoption date: 29 June 1991; effective date: 29 June 1991):

“All units and individuals shall have the obligation to protect water and soil resources, prevent and control soil erosion, and also have the right to report against any unit or individual that damages water and soil resources and causes soil erosion. The state shall, in relation to the work of water and soil conservation, implement the policy of prevention first, overall planning, comprehensive prevention and control, adoption of measures suited to local conditions, strengthening management and stress on beneficial results. The Department of Water Administration under the State Council and those under the local people’s governments at or above the county level shall, on the basis of investigation and assessment of water and soil resources, draw up water and soil conservation plans in conjunction with other departments concerned. Such water and soil conservation plans shall be subject to the approval by the people’s governments at the corresponding levels. Any water and soil conservation plan approved by the local people’s government at or above the county level shall be submitted to the department of water administration under the people’s government at the next higher level for the record. Any modification to be made to an approved water and soil conservation plan shall be re-submitted for approval to the original approving department. The people’s governments at or above the county level shall incorporate the tasks specified in the water and soil conservation plans into their respective plans for national economic and social development, allocate special funds therefore and organize the implementation thereof. The people’s governments at or above the county level shall, in line with the actual conditions of soil erosion, designate key areas on which preventive and rehabilitative efforts against soil erosion shall be focused”.

3. Linkage to Other Indicators:

Expenditures on Soil Conservation - 2001 to 2004
Farmland area per capita – 1987 to 2004

4. Targets:

There are no target figures which apply directly to this indicator value. However the Law on Water and Soil Conservation (1991) prescribes measures for prevention, rehabilitation and monitoring of soil erosion. For example, Article 14 of the law prohibits cultivation of crops on slopes greater than 25 degrees.

5. International Environment Treaties:

The UN Convention to Combat Land Desertification and Degradation has relevance to this indicator.

B. Analysis

The total area vulnerable to and affected by soil erosion declined slightly from about 146,000 km² in 1987 to 141,000 km² in the year 2000. The overall small decline hides some differences in the distribution of soil erosion by its different classes. While the area of light erosion, deep-strong erosion and severe erosion decreases the areas of moderate erosion and strong erosion actually went up. During the past 15 years, comprehensive soil conservation interventions were developed and used in the Yangtze and Pearl River watersheds. Terracing, afforestation and improvement of farming
practices have accounted for the reduction in the light erosion category since 1987. To tackle deep-strong erosion and severe erosion hillsides were temporarily closed off to facilitate reforestation. In the favorable natural conditions of Yunnan good results were typically obtained within 3 - 5 years and the severity of the erosion status quickly downgraded to the moderate or strong category. The increase in moderate and strong erosion in part reflected this reclassification that typically results in changes across erosion categories rather than a transition from erosion to no erosion status. Added to that was insufficient funding of erosion control measures in the western and south-western Yunnan province and greater planting of erosion-prone commercial crops like tobacco and sugarcane in parts of the province.

<table>
<thead>
<tr>
<th>Greater Mekong Subregion Indicator Fact Sheet</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATABASE INFORMATION</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Indicator ID</th>
<th>Indicator Name</th>
<th>Farm Land per Capita - 1984 to 2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year of Assessment</td>
<td>2005</td>
<td></td>
</tr>
<tr>
<td>Type of Indicator</td>
<td>Pressure</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frequently Asked Question (FAQ)</th>
<th>How much farmland is there in Yunnan? Is the pressure for more farmland one of the principal causes of environmental degradation?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Priority Concern</td>
<td>Land Degradation</td>
</tr>
<tr>
<td>Geographic Area</td>
<td>Yunnan Province</td>
</tr>
<tr>
<td>Magnitude & Trend</td>
<td>Non-comparable and Decreasing</td>
</tr>
</tbody>
</table>

| Key Message | Farm land per capita in 1984 was 1.25 mu and 2.10 mu in 2004. The population of Yunnan province increased by 30% during the same period. The local authorities appear to have succeeded in making more farmland available in the face of growing population and fast economic and infrastructure expansion. However, the quality of the additional land and the environmental aspects of this expansion are not well documented. |
TECHNICAL INFORMATION

A. Definition
This indicator is developed to track the change of farm land availability over time. The indicator is defined as the ratio of total farmland to total population of the province. The result is expressed in mu per person, where: 1 mu = 0.00066667 km² or 1 km² = 1500 mu

B. Data Source
The data for farm land area in 1984 and 1997 originate from Yunnan Province Soil Erosion Remote Sensing Survey, Yunnan Province Water Conservancy and Hydroelectric Power Department. The population data originate from the Statistical Yearbook of Yunnan Province: National Economy and Society. The data for farm land per capita for 2000 to 2004, which forms the basis of the indicator, originate from annual Yunnan Province State of the Environment reports.

C. Geographic Area / Population Coverage
The data are representative of farm land area and population for Yunnan Province as a whole.

D. Temporal Coverage
Indicator data are available for 1984, 1997 and then annually from 2000.

E. Methodology and Frequency of Coverage
The indicator value is currently calculated for 1984 and 1997; from 2000 the indicator value is normally published in the State of the Environment reports.

F. Methodology of Data Manipulation
The indicator figures in 1984, 1997 and 2000 were calculated as a ratio of total farm land to total population. Other indicator values were quoted directly from Yunnan Province State of the Environment, 2001-2004.

QUALITATIVE INFORMATION

A. Strength and Weakness (data level)
While giving a robust picture of the overall situation, the values of the indicator do not capture the variations in land quality and location. It is likely that additional farmland reclaimed between 1984 and 1997 was of poorer quality and less favorably located than the “older” land. If so, the indicator will overstate the degree of lessening of the pressure for more farmland, and through it, on other environmental assets.

B. Reliability, Accuracy, Robustness, Uncertainty (data level)
The reliability of the year 2000 figure, as published in the year 2000 State of the Environment Report, was questionable. A calculated value of 1.51 mu has been utilized instead.

C. Future Work Required (for data level and indicator level)
The indicator and the fact sheet should be updated annually as new figures are published in the State of the Environment reports.
Figure 1: Farmland Area, Population and Farmland per Capita – 1984-2004

![Graph showing farmland area, population, and farmland per capita from 1984 to 2004.](image)

Table 1: Farmland Area, Population and Farmland per Capita – 1984-1997

<table>
<thead>
<tr>
<th>Year</th>
<th>Farmland area (10,000 mu)</th>
<th>Population (10,000 persons)</th>
<th>Farmland area per capita (mu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1984</td>
<td>4201.9 a</td>
<td>3362.0 a</td>
<td>1.25 b</td>
</tr>
<tr>
<td>1997</td>
<td>4386.6 a</td>
<td>4097.0 a</td>
<td>1.07 b</td>
</tr>
<tr>
<td>2000</td>
<td>6400.0 c</td>
<td>4240.8 d</td>
<td>1.51 c</td>
</tr>
<tr>
<td>2001</td>
<td>6,385.3 c</td>
<td>4287.4 d</td>
<td>1.50 c</td>
</tr>
<tr>
<td>2002</td>
<td>9,448.3 c</td>
<td>4333.1 d</td>
<td>2.18 c</td>
</tr>
<tr>
<td>2003</td>
<td>9,280.9 c</td>
<td>4375.6 d</td>
<td>2.12 c</td>
</tr>
<tr>
<td>2004</td>
<td>9179.2 c</td>
<td>4415.2 d</td>
<td>2.10 c</td>
</tr>
</tbody>
</table>

Notes and Sources:

a Yunnan Province Soil Erosion Remote Sensing Survey
b Calculated from the data of population and farm land area from Yunnan Province Soil Erosion Remote Sensing Survey
c Yunnan Province State of the Environment. The original data of farm land per capita was in hectares, here converted to mu by multiplying by 15.
d Statistical Yearbook of Yunnan Province: National Economy and Society
e This figure appeared as 2.25 in the SOE report but has been corrected here for mathematical accuracy
A. **Policy Reference**

1. **Purpose:**
 Availability of farm land is among the key determinants of the pressure on land resources, including lands that should not be farmed because of their high environmental value in non-farming uses. A rise in the indicator value is seen as a positive trend for the purpose of combating land degradation. Higher values of farmland per capita make it easier to discontinue farming in environmentally sensitive areas and offer alternative livelihood opportunities to those affected.

2. **Relevance to Environment Planning and Management:**
 Safeguarding the stock of available farmland is high on the list of the Provincial Government's priorities reflecting the national policy. The Land Administration Law of the People's Republic of PRC [adoption date: 25 June 1986; amendment date: 29 August 1998; effective date: 1 January 1999] cites:

 "The State protects cultivated land and strictly controls conversion of cultivated land to non-cultivated land. The State applies the system of compensation for the use of cultivated land for other purposes. The principle of recovering the same amount of land as is used shall be applied to any unit that, with approval, uses cultivated land for construction of non-agricultural projects, that is, the unit shall be responsible for providing the same amount and quality of the cultivated land that it has used. If conditions for such reclamation do not exist or if the reclaimed land fails to meet the requirements, the unit shall pay expenses for reclamation in accordance with the regulations set by people's governments of provinces, autonomous regions and municipalities directly under the Central Government and the money shall exclusively be used for reclamation.

 People's governments of provinces, autonomous regions and municipalities directly under the Central Government shall formulate plans for land reclamation, and see to it that the unit that uses cultivated land replaces land according to plan or arrange reclamation according to plan, and conduct inspection before acceptance.

 Local people's governments at or above the county level may require the units that wish to use cultivated land to remove the arable layer of cultivated land to the replacement land or to land of inferior quality, or to other cultivated land to improve soils.

 People's governments of provinces, autonomous regions and municipalities directly under the Central Government shall strictly implement plans and annual plans for land utilization and take measures to ensure that the total amount of cultivated land within their administrative areas remains unreduced. Where the total amount of cultivated land is reduced, the State Council shall order the government concerned to reclaim land of the same quality and amount as is reduced within a time limit and the land administration department together with the agriculture administration department under the State Council shall inspect the land reclaimed before acceptance. Where individual governments of provinces or municipalities directly under the Central Government, for lack of land reserves, cannot reclaim enough land to make up for the cultivated land they used for additional construction projects, they shall apply to the State Council for approval of their reclaiming less or no land within their own administrative areas but of their reclaiming land in other areas".

3. **Linkage to Other Indicators:**
 This indicator, which tracks the pressure from farming on a limited land resource, may be useful for other land related concerns such as forest cover and forest resources.

B. **Analysis**
 Farmland per capita was 1.25 mu in 1984 and 2.10 mu in 2004. The population of Yunnan province increased by 30% during the same period, while the overall farmland increased by 45%. The local authorities appear to have succeeded in making more farmland available in the face of growing population and fast economic and infrastructure expansion. However, the quality of the additional land and the environmental aspects of this expansion are not well documented.