Application of spatial analysis in natural resources and environment management

Dr. Harald Kirsch (CIM)
Adviser for Spatial Planning, Ha Tinh Dept. of Natural Resources and Environment
Table of Content

1. Introduction: What is spatial analysis?
2. The use of Geographic Information System (GIS) to support spatial analysis
3. Example: Identification of potential land-use units
4. Concluding Remarks
1. Introduction: What is spatial analysis?

- Spatial analysis is a set of techniques for analyzing spatial data.
- It is studying objects and their arrangement, their geometric and geographic properties.
- The results of spatial analysis are dependent on the locations and the characteristics of the objects being analyzed.
- Spatial data tell us **what is where**, and how it is interconnected and related to each other.
- In land-use planning and environmental management, spatial data and its analysis can provide a crucial information base to make decisions.
Land-use planning (aiming to improve Natural Resources Management)

Spatial Data:
Natural resources, landforms, land cover and use, soil, geology, geomorphology, climate and climate change, hydrology, infrastructure, socio-economic and cultural settings

Land resources assessment

Analysis

Land suitability

Analysis

Land-use potentials and limitations

Identification of areas for specific types of land use. Identification of management and intervention options

Socio-economic development plans and other plans and plannings
2. The use of Geographic Information System (GIS) to support spatial analysis

Spatial data is stored in digital layer formats:
- Points
- Lines
- Polygons
- Raster

GIS software is applied to integrate, to process, combine, tailor and spatial data, and to display them as maps or tables.
• GIS is using coordinates and attributes of objects or features to compute their:
 – Spatial location
 – Spatial distribution / positioning / patterns
 – Spatial form / shape / size
 – Spatial relationship between objects or features

• Using GIS allows the integration of a wide range of environmental and socio-economic criteria.
• Potential options, alternatives, and also limitations can be defined, displayed and presented as maps and tables.
• These maps and tables serve as input to apply Multi-Criteria Analysis (MCA) techniques for comparative assessments of alternative options or intervention measures.
3. Example: Identification of potential land-use units

- Project “Improvement of Crop Yields on Marginal Land in Northern Thailand” (1992-1995)*
- Institute for Physical Geography, Frankfurt University, Germany
- ITC Enschede, The Netherlands
- Chiang Mai University (Dept. of Geography, Multiple Cropping Centre (MCC), Dept. of Chemistry, Dept. of Political Science)
- Funded by supported by the European Commission under the program "Life Sciences and Technologies for Developing Countries #3 (STD3)"

Main Objectives:
- Improvements of crop yields by analyzing their key parameters
- Inventory of natural resources
- Classification of potential land-use units
- Providing a database for further development of the area.

Input data collection and processing:
- Cadastral and Topographical Maps 1:10 000, 1:50 000, 1:250 000
- LandSat 7 TM image
- Aerial Photographs 1:15 000 (stereo pair)
- Field survey: soil, geology, land use, water resources, interviews with farmers
- Climate data
- Laboratory analysis: soil samples
- MCC: Demonstration Plot

- Data tables (dBase4, Excel)
- GIS data layers: ILWIS 1.4
GIS data layers produced:
- Elevation
- Slope
- Soil
- Geology (Tectonics and Stratigraphy)
- Geomorphology
- Land use 1992 and 1994
- Base map incl. infrastructure and all land plots 1:10 000
- Water resources, incl. reservoirs
- Socio-economic data
- Farmers’ perceptions and opinions
- Land use history

High proportion of unused (fallow) land: 31.5 % => 37.38 %; why?

<table>
<thead>
<tr>
<th>FAO Soil Unit</th>
<th>Area km²</th>
<th>Area %</th>
<th>Possible obstacles for land use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haplic Alisol/Acrisol</td>
<td>2.21</td>
<td>29.66</td>
<td>Distance to reservoir; economical</td>
</tr>
<tr>
<td>Gleyic Alisol/Acrisol</td>
<td>0.53</td>
<td>7.11</td>
<td>Flooding during the rainy season</td>
</tr>
<tr>
<td>Stagnic Ali./Acrisol</td>
<td>0.38</td>
<td>5.10</td>
<td>Distance to reservoir; economical</td>
</tr>
<tr>
<td>Dystric Plinthosol</td>
<td>0.57</td>
<td>7.65</td>
<td>Gravel and laterite at the surface, soil poorly developed</td>
</tr>
<tr>
<td>Albic Plinthosol</td>
<td>1.53</td>
<td>20.54</td>
<td>Distance to reservoir; low fertility, shallow soil development</td>
</tr>
<tr>
<td>Calceric Regosol</td>
<td>0.03</td>
<td>0.40</td>
<td>Coarse-textured soil; soil poorly developed</td>
</tr>
<tr>
<td>Ferralic Cambisols</td>
<td>0.15</td>
<td>2.01</td>
<td>Distance to reservoir; economical</td>
</tr>
<tr>
<td>Albic Arenosols</td>
<td>0.95</td>
<td>12.75</td>
<td>Low fertility, distance to reservoir</td>
</tr>
<tr>
<td>Gleyic Arenosols</td>
<td>1.09</td>
<td>14.63</td>
<td>Low fertility, distance to reservoir</td>
</tr>
<tr>
<td>Gleysols</td>
<td>0.01</td>
<td>0.13</td>
<td>Flooding during the rainy season</td>
</tr>
</tbody>
</table>
Options to improve water supply: reservoirs or wells?

- GIS data layers produced:
 - Elevation
 - Slope
 - Soil
 - Geology (Tectonics and Stratigraphy)
 - Geomorphology
 - Land use 1992 and 1994
 - Base map incl. infrastructure and all land plots 1:10 000
 - Water resources, incl. reservoirs
 - ++++

 - Socio-economic data
 - Farmers’ perceptions and opinions
 - Land use history

High potential: Ground water table of 2-6 m below surface (in the dry season) [Area = 5.48 km², 21.07%].

Medium potential: Ground water table of 8-15m below surface (in the dry season). [Area = 2.17 km², 8.34%].

Unsuitable: hard laterite ground-water levels >20 m, existing reservoirs [Area = 18.38 km², 70.59%]
<table>
<thead>
<tr>
<th>TMU No.</th>
<th>Name</th>
<th>Description</th>
<th>Limitations</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Forest</td>
<td>Already forested areas located outside the LRD plots</td>
<td>Poor soil quality makes this area unsuitable for field crops as well as for fruit-trees</td>
<td>2.47 km², 9.50%</td>
</tr>
<tr>
<td>2</td>
<td>Unsuitable for agriculture</td>
<td>Previously fallow land on Dystric Plinthosols</td>
<td>Poor soil quality makes this area unsuitable for field crops as well as for fruit-trees</td>
<td>0.68 km², 2.61%</td>
</tr>
<tr>
<td>3.1</td>
<td>Animal farm (livestock)</td>
<td>Already established pig and cow farms < 400 m from reservoir</td>
<td>Poor soil quality makes this area unsuitable for field crops as well as for fruit-trees</td>
<td>0.01 km², 0.03%</td>
</tr>
<tr>
<td>3.2</td>
<td>Animal farm (limited suitable)</td>
<td>Already established pig and cow farms</td>
<td>> 400 m from reservoir</td>
<td>0.09 km², 0.36%</td>
</tr>
<tr>
<td>4.1</td>
<td>Undemanding field crops with shallow root systems</td>
<td>Previously fallow and field crop areas. Albic Plinthosols with low soil-moisture capacities and fertility rates; < 400 m from reservoir</td>
<td>Laterite in 40-60 cm depth can limit the root development</td>
<td>0.87 km², 3.34%</td>
</tr>
<tr>
<td>4.2</td>
<td>Undemanding field crops with shallow root systems</td>
<td>Previously fallow and field crop areas. Albic Plinthosols with low soil-moisture capacities and fertility rates.</td>
<td>Laterite in 40-60 cm depth can limit the root development; > 400 m from reservoir; unsuitable for reservoir or wells</td>
<td>1.68 km², 6.47%</td>
</tr>
<tr>
<td>5.1</td>
<td>Orchard</td>
<td>Already established orchards or intercropping systems (mango and longan mixed with field crops, e.g. soya) on various soil types; < 400 m from reservoir</td>
<td></td>
<td>1.17 km², 4.49%</td>
</tr>
<tr>
<td>5.2</td>
<td>Orchard (limited suitable)</td>
<td>Already established orchards or intercropping systems (mango and longan mixed with field crops, e.g. soya) on various soil types; > 400 m from reservoir</td>
<td></td>
<td>6.03 km², 23.15%</td>
</tr>
<tr>
<td>6.1</td>
<td>Field crops, orchards (intercropping), agroforestry</td>
<td>Previously fallow, field crop and intercropping areas on Haplic or Stagnic Alisols and Acrisols < 400 m from reservoir; most suitable cropping area.</td>
<td></td>
<td>0.75 km², 2.87%</td>
</tr>
<tr>
<td>6.2</td>
<td>Field crops, orchards (intercropping), agroforestry (limited suitable)</td>
<td>Previously fallow, field crop and intercropping areas on Haplic or Stagnic Alisols and Acrisols > 400 m from reservoir</td>
<td></td>
<td>4.24 km², 16.29%</td>
</tr>
<tr>
<td>6.3</td>
<td>Field crops, orchards (intercropping), agroforestry (perched ground water)</td>
<td>Previously fallow and field crop areas on Gleyic Alisols and Acrisols</td>
<td>Frequent flooding during the rainy season can damage crops</td>
<td>1.02 km², 3.91%</td>
</tr>
<tr>
<td>7.1</td>
<td>Field crops, orchards (intercropping)</td>
<td>Previously fallow and field crop areas on Arenosols < 400 m from reservoir</td>
<td>Sandy soil</td>
<td>0.22 km², 0.86%</td>
</tr>
<tr>
<td>7.2</td>
<td>Field crops, orchards (intercropping), limited suitable</td>
<td>Previously fallow and field crop areas on Arenosols > 400 m from reservoir</td>
<td>Sandy soil, > 400 m from reservoir</td>
<td>2.97 km², 11.41</td>
</tr>
<tr>
<td>8</td>
<td>Public and residential areas</td>
<td>Already established public and residential areas</td>
<td>Water-holding capacities could be improved by covering the bottom with plastic sheets</td>
<td>0.79 km², 3.02%</td>
</tr>
<tr>
<td>9</td>
<td>Reservoir or pond</td>
<td>Already established reservoirs and ponds</td>
<td>Water-holding capacities could be improved by covering the bottom with plastic sheets</td>
<td>0.49 km², 1.88%</td>
</tr>
</tbody>
</table>

Combination of all relevant layers and information => Identification of Thematic Units for Potential Land Use (TMU) and their attributes.
4. Concluding Remarks

- STD3 project results were considered by MCC, LRD, and farmers.
- Cooperation between academic institutions, government departments, and the rural population can be very beneficial.
- Any land use planning should reflect suitability aspects based on physical and socio-economic conditions.
- Spatial analysis is a step-wise process, it needs expertise in the subjects concerned (GIS, natural resources, economy, etc.) to select the right criteria for the desired output. Thus it requires multidisciplinary cooperation.
- It is a dynamic process. For instance in the previous example, by adapting the input parameters of the model - e.g. after improving water supply - the effected land plots can be reclassified into other thematic units.
- GIS is a useful support tool to compute huge amounts of data, but the interpretation of results is done by humans.
- Numerous Geoinformation Systems and Databases already exist in Vietnam (E.g. Ha Tinh Coastal Zone Database, GIZ-EbA Vulnerability Analysis Database Ha Tinh and Quang Bin, Soils and Fertilizer Research Institute, GIZ ICMP, FORMIS, +++).
- How can the data be utilized efficiently to support decision-making in environmental management, land-use planning, land allocation, and Strategic Environmental Assessment?
- What are the technical issues concerning software, data compatibility, accuracy and accessibility?
- How can technical experts can provide useful outputs to support decision-making?
THANK YOU for your attention!

Dr. Harald Kirsch
Email: harald.kirsch@cimonline.de